IP(3)-induced tension and IP(3)-receptor expression in rat soleus muscle during postnatal development.

نویسندگان

  • Sophie Talon
  • Olivier Vallot
  • Corinne Huchet-Cadiou
  • Anne-Marie Lompré
  • Claude Léoty
چکیده

The present study was designed to examine whether changes in Ca(2+) release by inositol-1,4,5-trisphosphate (IP(3)) in 8-, 15-, and 30-day-old rat skeletal muscles could be associated with the expression of IP(3) receptors. Experiments were conducted in slow-twitch muscle in which both IP(3)-induced Ca(2+) release and IP(3)-receptor (IP(3)R) expression have been shown to be larger than in fast-twitch muscle. In saponin-skinned fibers, IP(3) induced transient contractile responses in which the amplitude was dependent on the Ca(2+)-loading period with the maximal IP(3) contracture being at 20 min of loading. The IP(3) tension decreased during postnatal development, was partially inhibited by ryanodine (100 microM), and was blocked by heparin (20-400 microg/ml). Amplification of the DNA sequence encoding for IP(3)R isoforms (using the RT-PCR technique) showed that in slow-twitch muscle, the type 2 isoform is mainly expressed, and its level decreases during postnatal development in parallel with changes in IP(3) responses in immature fibers. IP(3)-induced Ca(2+) release would then have greater participation in excitation-contraction coupling in developing fibers than in mature muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex

Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...

متن کامل

Isoform switching in myofibrillar and excitation-contraction coupling proteins contributes to diminished contractile function in regenerating rat soleus muscle.

Postnatal development of skeletal muscle occurs through the progressive transformation of diverse biochemical, metabolic, morphological, and functional characteristics from the embryonic to the adult phenotype. Since muscle regeneration recapitulates postnatal development of muscle fiber, it offers an appropriate experimental model to investigate the existing relationships between diverse muscl...

متن کامل

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

Role(s) of gravitational loading during developing period on the growth of rat soleus muscle fibers.

Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from postnatal day 4 to month 3, and the reloading was allowed for 3 mo in some rats. Single expression of type I myosin heavy chain (MHC) was observed in approximately 82% of fibers in 3-mo-old controls, but the fibers ...

متن کامل

An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension.

Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 282 4  شماره 

صفحات  -

تاریخ انتشار 2002